

DRAHTLÖSUNGEN

FÜR DAS SCHWEISSEN VON ALUMINIUMLEGIERUNGEN

Inhalt

bedra Aluminium: Die Grundlage	02
Legierungsübersicht	04
Datenblätter	
berAlweld® M1070 (Al99,7)	06
berAlweld® M1450 (Al99,5Ti)	07
berAlweld® M4043 (AlSi5(A))	08
berAlweld® M4047 (AlSi12)	09
berAlweld® M5087 (AlMg4,5MnZr(A))	10
berAlweld® M5183 (AlMg4,5Mn0,7(A))	11
berAlweld® M5356 (AlMg5Cr(A))	12
berAlweld® M5554 (AIMg2,7Mn)	13
berAlweld® M5754 (AlMg3)	14
Verpackung	15
Auswahl der richtigen berAl weld®-Legierung	16

bedra und Aluminium

Mehrwert für unsere Kunden. Das ist unser Anspruch. Schon 1889 war es für morgen. Wir erweitern unser Löt- und Schweißdraht-Portfolio um hochwertige Zusatzwerkstoffe aus Aluminiumlegierungen. Dafür haben wir unsere Erfahrungen aus über 130 Jahren in der Drahtproduktion mit neuesten Technologien und Spezialisten aus dem Aluminiumbereich verknüpft. Daher können wir jetzt Aluminiumschweißdrähte in bekannt hoher bedra-Qualität herstellen.

Tradition

Seit mehr als 130 Jahren produzieren wir Draht. Damit kennen wir uns aus, das ist unsere Kernkompetenz. Aus dieser Erfahrung

schöpfen wir unsere Fähigkeiten und Know-How.

Carl Berkenhoff selbstverständlich, seinen Kunden mehr zu bieten als andere. Heute schätzen Kunden weltweit bedra als verlässlichen Partner für nachhaltige Lösungen im Bereich der Hightech-Präzisionsdrähte aus Kupfer und Kupfer-basierten Legierungen für Funkenerosion, Löten und Schweißen, Elektronikanwendungen und viele andere. Wir hören unseren Kunden zu, verstehen ihre Bedürfnisse und bieten ihnen auf sie zugeschnittene Lösungen. Mehr als 100 Legierungen sind ein eindrücklicher Beweis für unser Know-How. Doch darauf ruhen wir uns nicht aus. Wir arbeiten heute schon an den Innovationen für

Gießerei

Unsere eigene Gießerei ist unser Alleinstellungsmerkmal. Damit sind wir in der Lage, auf Wünsche am Markt zu reagieren und unseren Kunden Legierungen nach ihren Vorgaben herzustellen.

Kompetenz

Know-How ist einer der Schlüssel zum Erfolg. Wir erweitern täglich unser Wissen und schöpfen aus unserer langjährigen Erfahrung. Für neue Bereiche erweitern wir unser Kompetenzteam.

Forschung und Entwicklung

Die Ingenieure unserer Forschungs- und Entwicklungsabteilung sind nah am Markt und im engen Kontakt mit unseren Kunden. So entstehen unsere Innovationen und Produktneuheiten.

Qualität

Wir bieten als einer der wenigen weltweiten Lieferanten alle Leistungen aus einer Hand. So können wir unsere Prozesse zu 100 % zurückverfolgen und so eine gleichbleibend hohe Qualität sicherstellen.

	Norm- bezeichnung		C	hemis	che Zı	usamr	nense	tzung	(gemä	ß DIN E	EN ISO	18273)		Physikalische Eigenschaften des Materials			erials	Mechanische Eigenschaften der Schweißnaht				Anwendung	
		Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Ве	Sonst.	Elektrische Leitfähigkeit (m/Ω mm²)	Wärme- Leitfähigkeit (W/mK)	Ausdehnungs- koeffizient (20-100°C) (1/K)	Schmelz- intervall (°C)	Dichte (g/cm³)	Streck- grenze (MPa)	Zugfes- tigkeit (MPa)	Dehnung A5 (%)	Elastizi- tätsmodul (MPa)	
berAlweld® M1070	S AI 1070 (AI99,7) 3.0259 ER 1070	<0,20	<0,25	<0,04	<0,03	<0,03	-	<0,04	-	<0,03	≥99,70	<0,0003	-	34-36	210-230	23,5*10 ⁻⁶	647-658	2,7	≥20	≥65	≥35	68000	Chemische, Bau-, Elekt- ronik- und Nahrungsmit- telindustrie
berAlweld® M1450	S AI 1450 (AI99,5Ti) 3.0805 ER 1450	<0,25	<0,40	<0,05	<0,05	<0,05	-	<0,07	-	0,10 - 0,20	≥99,50	<0,0003	-	≥35	210-230	23,5*10 ⁻⁶	647-658	2,7	≥20	≥65	≥35	68000	Chemische, Bau- und Nahrungsmittelindustrie
berAlweld® M4043	S AI 4043A (AISi5(A)) 3.2245 ER 4043	4,5 - 6,0	<0,6	<0,30	<0,15	<0,05	-	<0,10	-	<0,15	Rest	<0,0003	<0,15	24-32	<170	22,1*10 ⁻⁶	573-625	2,68	≥40	≥120	≥ 8	69000	Automobilindustrie Fahrrad-/Motorrad-Rahmen Möbel
berAlweld® M4047	S AI 4047 (AISi12) 3.2285 ER 4047	11,0 - 13,0	<0,8	<0,30	<0,15	<0,10	-	<0,20		-	Rest	<0,0003	<0,15	17-27	150-170	20*10 ⁻⁶	573-585	2,65	≥60	≥130	≥5	75000	Automobilindustrie Wärmetauscher Karosserieblech Hartlöten von Aluminium- blechen, Profilen und Gussteilen
berAlweld® M5087	S AI 5087 (AIMg4,5MnZr(A)) 3.3546 ER 5087	<0,25	<0,40	<0,05	0,7 - 1,1	4,5 - 5,2	0,05 - 0,25	<0,25	0,10 - 0,20	<0,15	Rest	<0,0003	<0,15	15-19	130-170	23,7*10 ⁻⁶	574-638	2,66	≥140	≥285	≥18	69000	Automobilindustrie Schiffsbau Offshore-Einsatz Waggonbau Lagertanks Strukturbauteile Tieftemperaturanwendung
berAlweld® M5183	S AI 5183 (AIMg4,5Mn0,7(A)) 3.3548 ER 5183	<0,40	<0,40	<0,10	0,50 - 1,0	4,3 - 5,2	0,05 - 0,25	<0,25	-	<0,15	Rest	<0,0003	<0,15	16-19	110-120	23,7*10 ⁻⁶	574-638	2,66	≥130	≥275	≥18	69000	Automobilindustrie Schiffsbau Offshore-Einsatz Waggonbau Lagertanks Strukturbauteile Tieftemperaturanwendung
berAlweld® M5356	S AI 5356 (AIMg5Cr(A)) 3.3556 ER 5356	<0,25	<0,40	<0,10	0,05 - 0,20	4,5 - 5,5	0,05 - 0,20	<0,10	-	0,06 - 0,20	Rest	<0,0003	<0,15	15-19	130-170	23,9*10 ⁻⁶	575-633	2,64	≥120	≥250	≥18	69000	Automobilindustrie Schiffsbau Bauindustrie Tankbau
berAlweld® M5554	S AI 5554 (AIMg2,7Mn) 3.3538 ER 5554	<0,25	<0,40	<0,10	0,50 - 1,0	2,4 - 3,0	0,05 - 0,20	<0,25	-	0,05 - 0,20	Rest	<0,0003	<0,15	-	-	-	602-648	2,68	≥100	≥215	≥18	-	Chemie-Lagertanks Autoreifen Anhänger Kesselwagen
berAlweld® M5754	S AI 5754 (AIMg3) 3.3536 ER 5754	<0,40	<0,40	<0,10	<0,50	2,6 - 3,6	<0,30	<0,20	-	<0,15	Rest	<0,0003	<0,15 Mn+Cr: 0,10 - 0,60	20-23	130-170	23,9*10 ⁻⁶	610-642	2,66	≥80	≥190	≥20	70500	Tankbau Schiffsbau Automobilfelgen Bauindustrie Outdoormöbel

bedra intelligent wires

AlSi Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen

Eigenschaften

gutes Flieβverhalten

Anwendungen

- Chemische Industrie
- Bauindustrie
- Elektronikindustrie
- Nahrungsmittelindustrie

Typische Basismaterialien

- Reinaluminium
- Al-Legierungen mit max. 0,5% Legierungselementen

Norm

DIN EN ISO 18273: S AI 1070 (AI99,7)

DIN 1732: 3.0259

AWS A5.10: ER 1070

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Be	Sonst.
<0,20	<0,25	<0,04	<0,03	<0,03	-	<0,04	-	<0,03	≥99,70	<0,0003	-

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit $(m/\Omega \ mm^2)$	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
34-36	210-230	23,5*10 ⁻⁶	647-658	2,7

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥ 20	≥ 65	≥ 35	68000

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

berAlweld® M1450

AlSi Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen

Eigenschaften

- gutes Flieβverhalten
- Ti wirkt kornfeinend
- erhöhte Korrosionsbeständigkeit

Anwendungen

- Chemische Industrie
- Bauindustrie
- Nahrungsmittelindustrie

Norm

- DIN EN ISO 18273: S AI 1450 (AI99,5Ti)
- DIN 1732: **3.0805**
- AWS A5.10: ER 1450

Typische Basismaterialien

- Reinaluminium
- Al-Legierungen mit max. 0,5%
 Legierungselementen

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Ве	Sonst.
<0,25	<0,40	<0,05	<0,05	<0,05	-	<0,07	-	0,10- 0,20	≥99,5	<0,0003	-

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit (m/ Ω mm²)	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
≥ 35	210-230	23,5*10 ⁻⁶	647-658	2,7

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥ 20	≥ 65	≥ 35	

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

AlSi Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen Auch als Spritzdraht in Abmessungen von 1,60 bis 4,00 mm erhältlich

Eigenschaften

- niedrige Empfindlichkeit gegen Heißrisse
- Si erhöht die Fließfähigkeit und wird daher von Schweißern bevorzugt
- helles und nahezu rauchfreies Schweißen
- nicht empfohlen zum Eloxieren

Anwendungen

- Automobilindustrie
- Fahrrad-/Motorrad-Rahmen
- Möbel

Norm

- DIN EN ISO 18273: S AI 4043A (AISi5(A))
- DIN 1732: **3.2245**
- AWS A5.10: ER 4043

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Typische Basismaterialien

- AlSi-Legierungen
- AlMgSi-Legierungen
- Gusslegierungen mit Si-Anteil von max. 7%

Zulassungen

- ΤÜV
- DB

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Be	Sonst.
4,5-6,0	<0,6	<0,30	<0,15	<0,05	-	<0,10	-	<0,15	Rest	<0,0003	<0,15

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit $(\text{m}/\Omega~\text{mm}^2)$	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
24-32	<170	22,1*10 ⁻⁶	573-625	2,68

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul	
(MPa)	(MPa)	A5 (%)	(MPa)	
≥ 40	≥ 120	≥8	69000	

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

berAlweld® M4047

AlSi Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen Auch als Spritzdraht in Abmessungen von 1,60 bis 4,00 mm erhältlich

Eigenschaften

- hoher Si-Gehalt reduziert die Empfindlichkeit gegen Schweißrisse und erzeugt eine höhere Scherfestigkeit beim Kehlnahtschweißen
- noch höhere Flieβfähigkeit im Vergleich zu berAlweld® M4043
- helles und nahezu rauchfreies Schweißen
- nicht empfohlen zum Eloxieren

Norm

- DIN EN ISO 18273: **S AI 4047** (AISi12)
- DIN 1732: 3.2585
- AWS A5.10: ER 4047

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Be	Sonst.
11,0-13,0	<0,8	<0,30	<0,15	<0,10	-	<0,20	-	-	Rest	<0,0003	<0,15

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit (m/ Ω mm²)	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
17-27	150-170	20*10 ⁻⁶	573-585	2,65

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul	
(MPa)	(MPa)	A5 (%)	(MPa)	
≥ 60	≥130	≥5		

Anwendungen

- Wärmetauscher
- Karosserieblech

Automobilindustrie

Hartlöten von Aluminiumblechen, Profile und Gussteile

Typische Basismaterialien

 Gusslegierungen mit Si-Anteil von max. 12%

Übersicht Aufmachungen

Drahtdurchmesser (mm)
0,8 - 1,6
1,0 - 1,6
1,6 - 6,0

AlMg Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen für verschiedene Al Legierungen

Eigenschaften

- geringe Anfälligkeit für Schweiβrisse durch Cr&Zr
- ausgezeichnete Korrosionsbeständigkeit gegenüber Meerwasser und Meeresatmosphäre
- für höchste Anforderungen an Zugfestigkeit
- geeignet für Dauerbetrieb bei erhöhten Temperaturen bis zu 80°C
- nicht empfohlen zum Eloxieren

Norm

- DIN EN ISO 18273: S AI 5087 (AIMg4,5MnZr(A))
- DIN 1732: 3.3546
- AWS A5.10: ER 5087

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Anwendungen

- Automobilindustrie
- Schiffsbau
- Offshore-Anwendungen
- Waggonbau
- Lagertanks
- Strukturbauteile
- Tieftemperaturanwendungen

Typisches Basismaterial

 AIMg, AIMn, AIMgSi, AIMgMn und AIZnMg Legierungen

Zulassungen

- TÜV
- DB
- DNV/GL

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Be	Sonst.
<0,25	<0,40	<0,05	0,7-1,1	4,5-5,2	0,05-0,25	<0,20	0,10-0,20	<0,15	Rest	<0,0003	<0,15

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit (m/ Ω mm 2)	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
15-19	130-170	23,7*10 ⁻⁶	574-638	2,66

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥ 140	≥ 285	≥18	69000

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

berAlweld® M5183

AlMg Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen für verschiedene Al Legierungen

Eigenschaften

- ausgezeichnete Korrosionsbeständigkeit gegenüber Meerwasser und Meeresatmosphäre
- für höchste Anforderungen an hohe Zugfestigkeit

DIN EN ISO 18273: S AI 5183 (AIMg4,5Mn0,7(A))

nicht empfohlen zum Eloxieren

Anwendungen

- Automobilindustrie
- Schiffsbau
- Offshore-Anwendungen
- Bahnbau
- Lagertanks
- Strukturbauteile
- Tieftemperaturanwendungen

Typisches Basismaterial

 AIMg, AIMn, AIMgSi, AIMgMn und AIZnMg Legierungen

Schutzgas (EN ISO 14175)

DIN 1732: 3.3548

AWS A5.10: ER 5183

Ar (I1)

Norm

Ar/He-Mischung (I3)

Zulassungen

- TÜV
- DB
- DNV/GL

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Ве	Sonst.
<0,40	<0,40	<0,10	0,50-1,0	4,3-5,2	0,05-0,25	<0,25	-	<0,15	Rest	<0,0003	<0,15

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit (m/Ω mm²)	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
16-19	110-120	23,7*10 ⁻⁶	574-638	2,66

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥ 130	≥ 275	≥ 18	

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

l10 l11

berAlweld® M5554

bedra
intelligent wires

AlMg Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen für verschiedene AlMg Legierungen

Eigenschaften

- hohe Scherfestigkeit
- ausgezeichnete Korrosionsbeständigkeit gegenüber Meerwasser und Meeresatmosphäre
- sehr gute Farbübereinstimmung bei eloxierten Teilen
- nicht geeignet für Dauerbetrieb bei erhöhten Temperaturen (>65°C)

DIN EN ISO 18273: S AI 5356 (AIMg5Cr(A))

Anwendungen

- Automobilindustrie
- Schiffsbau
- Bauindustrie
- Tankbau

Typisches Basismaterial

- AlMg, AlMgSi, AlMgMn-Knetlegierungen mit einem Mg-Gehalt von bis zu 5%
- AlMg-Gusslegierungen mit einem Mg-Gehalt von bis zu 10%

Schutzgas (EN ISO 14175)

DIN 1732: **3.3556**

AWS A5.10: ER 5356

Ar (I1)

Norm

Ar/He-Mischung (I3)

Zulassungen

- TÜV
- DB
- DNV/GL

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Ве	Sonst.
<0,25	<0,40	<0,10	0,05-0,20	4,5-5,5	0,05-0,20	<0,10	-	0,06-0,20	Rest	<0,0003	<0,15

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit (m/ Ω mm 2)	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
15-19	130-170	23,9* 10 ⁻⁶	575-633	2,64

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥120	≥ 250	≥18	69000

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

AlMg Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen für verschiedene AlMg Legierungen

Eigenschaften

- hohe Korrosionsbeständigkeit
- geeignet für Dauerbetrieb bei erhöhten Temperaturen (65-160°C)

Anwendungengen

- Chemielagertanks
- Automobilfelgen
- Anhänger
- Kesselwagen

Norm

- DIN EN ISO 18273: S AI 5554 (AIMg2,7Mn)
- DIN 1732: **3.3538**
- AWS A5.10: ER 5554

Typisches Basismaterial

 AIMg und AIMgMn Legierung mit einem Mg-Gehalt von bis zu 3%

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Ве	Sonst.
<0,25	<0,40	<0,10	0,50-1,0	2,4-3,0	0,05-0,20	<0,25	-	0,05-0,20	Rest	<0,0003	<0,15

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit $(m/\Omega \ mm^2)$	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
-	-	-	602-648	2,68

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥ 100	≥ 215	≥ 18	

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)
Spule (0,5/2/7kg)	0,8 - 1,6
Fass (80/150/250kg)	1,0 - 1,6
Stäbe (1000mm/10kg)	1,6 - 6,0

l12 l13

AlMg Schweißzusatzwerkstoff für MIG und TIG Schweißanwendungen für verschiedene AlMg Legierungen

Eigenschaften

- ausgezeichnete Korrosionsbeständigkeit
- sehr gute Farbübereinstimmung bei eloxierten Teilen

Anwendungen

- Automobilindustrie
- Schiffsbau
- Bauindustrie
- Tankbau
- Outdoormöbel

Norm

- DIN EN ISO 18273: S AI 5754 (AIMg3)
- DIN 1732: **3.3536**
- AWS A5.10: ER 5754

Typisches Basismaterial

AIMg, AIMgSi, AIMgMn-Knet- und Gusslegierungen mit einem Mg-Gehalt von bis zu 3%

Schutzgas (EN ISO 14175)

- Ar (I1)
- Ar/He-Mischung (I3)

Chemische Zusammensetzung (%)

Si	Fe	Cu	Mn	Mg	Cr	Zn	Zr	Ti	Al	Ве	Sonst.
<0,40	<0,40	<0,10	<0,50	2,6-3,6	<0,30	<0,20	-	<0,15	Rest	<0,0003	<0,15 Mn+Cr: 0,10-0,60

Physikalische Eigenschaften des Materials

Elektrische Leitfähigkeit $(m/\Omega \ mm^2)$	Wärmeleitfähigkeit (W/mK)	Ausdehungskoeffizient (20-100°C) (1/K)	Schmelzintervall (°C)	Dichte (g/cm³)
20-23	130-170	23,9*10 ⁻⁶	610-642	2,66

Mechanische Eigenschaften der Schweißnaht

Streckgrenze	Zugfestigkeit	Dehnung	Elastizitätsmodul
(MPa)	(MPa)	A5 (%)	(MPa)
≥ 80	≥ 190	≥ 20	70500

Übersicht Aufmachungen

Aufmachung	Drahtdurchmesser (mm)		
Spule (0,5/2/7kg)	0,8 - 1,6		
Fass (80/150/250kg)	1,0 - 1,6		
Stäbe (1000mm/10kg)	1,6 - 6,0		

Verpackungen

Spulen

Plastikspule S100	Plastikspule S200	Plastikspule S300	Korbspule BS300	Korbspule B300
(Füllgewicht: 0,5kg)	(Füllgewicht: 2kg)	(Füllgewicht: 7kg)	(Füllgewicht: 7kg)	(Füllgewicht: 7kg)
45 001	45 200	103 300	300	Adapter 300

Verpackung Spulen:

Jede Einheit enthält eine Spule mit Schweiβdraht, umschlossen von einem PE-Beutel mit Trockenmittel und in einem stabilen Karton verpackt.

Verpackung Stäbe:

Jeder Schweißdrahtstab ist mit seiner Legierungsbezeichnung und Abmessung gekennzeichnet und in einem stabilen Karton verpackt.

bedrabox

	F211	A 1	
	(kg)	Abmessung (mm)	Kern Ø (mm)
bedrabox 510 (a)	80	510x770	315
bedrabox 620 (b)	150	620x770	400

Zubehör:

Für Zubehör beachten Sie bitte unsere separate Zubehör-Broschüre

Die bedrabox wird aus recycelter und wiederverwertbarer Pappe hergestellt. Das ist gut für die Umwelt und gut für Sie, denn die bedrabox kann problemlos in den Rohstoffkreislauf zurückgeführt werden. ecofriendly

Fässer

		Füllgewicht (kg)	Abmessung (mm)	Kern Ø (mm)
-	Rundfass 750 (a)	200-250	750x1130	315
	Quadratfass 600 (b)	130	600x600 x900	315
	Quadratfass 600½ (c)	65	600x600 x410	315

Zubehör:

Für Zubehör beachten Sie bitte unsere separate Zubehör-Broschüre

1060, 1070, 1080,

1350, 1450

1070, 1450

3004,

Alclad 3004

4043

4043

Auswahl der richtigen berAlweld®-Legierung

357.0, A357.0,

359.0, 443.0,

A444.0

4043

Basismaterial zu Basismaterial	356.0, A356.0 357.0, A357.0, 359.0, 443.0, A444.0	7005	6005, 6061, Alclad 6061, 6063, 6351	5454	5154, 5254	5086, 514.0, 535.0	5083, 5456	5052, 5652
1060, 1070, 1080, 1350, 1450	4043	5356	4043	4043	4043	5356	5356	4043
3004, Alclad 3004	4043	5356	5356	5356	5356	5356	5356	4043
5005, 5050	4043	5356	4043 5356	5356	5356	5356	5356	4043 5356
5052, 5652	4043	5356	4043 5356	5356	5356	5356	5356	5356
5083, 5456	5356	5556	5356	5356	5356	5356	5556 5183	
5086, 514.0, 535.0	5356	5356	5356	5356	5356	5356		
5154, 5254	4043	5356	5356	5356	5356		_	
5454	4043	5356	5356	5554		-		
6005, 6061, Al- clad 6061, 6063, 6351	4043	5356	4043 5356		T			
7005	4043	5356				1.	merkung: Die aufgeführten Zusa Wenn zwei Zusatzwerk	kstoffe in der Tabelle a
356.0, A356.0,							Anwendungen mit den Bei Anwendungen mit	

Die aufgeführten Zusatzwerkstoffe sind die optimale Wahl für die meisten Konstruktionswerkstoffanwendungen.
 Wenn zwei Zusatzwerkstoffe in der Tabelle aufgeführt sind, können beide verwendet werden.

5005,

5050

4043

4043

4043 5356

- 2. Anwendungen mit dem Zusatzwerkstoff 4043 können auch 4047 als Ersatz verwenden.
- 3. Bei Anwendungen mit Zusatzwerkstoff 5356 kann auch 5556 oder 5183 als Ersatz verwendet werden.
- 4. Al-Mg-Legierung mit einem Mg-Gehalt über 3% kann nicht in Anwendungen mit Langzeittemperaturen über 65°C (150°F) verwendet werden.
- 5. Für Anwendungen mit besonderen Anforderungen weicht die Auswahl des Füllmetalls von der obigen Liste ab.